State Space Reduction Using Partial
7-Confluence

Jan Friso Groote!? and Jaco van de Pol?

L CWI, P.O.-box 94.079, 1090 GB Amsterdam, The Netherlands

2 Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We present an efficient algorithm to determine the maximal
class of confluent 7-transitions in a labelled transition system. Confluent
T-transitions are inert with respect to branching bisimulation. This al-
lows to use T-priorisation, which means that in a state with a confluent
outgoing 7-transition all other transitions can be removed, maintaining
branching bisimulation. In combination with the removal of 7-loops, and
the compression of T-sequences this yields an efficient algorithm to reduce
the size of large state spaces.

1 Introduction

A currently common approach towards the automated analysis of distributed
systems is the following. Specify an instance of the system with a limited number
of parties and a small data domain. Subsequently, generate the state space of
this system and reduce it using an appropriate equivalence, for which weak
bisimulation [16] or branching bisimulation [6] generally serves quite well. The
reduced state space can readily be manipulated, and virtually all questions about
it can be answered with ease, using appropriate, available tools (see e.g. [5,4,8]
for tools to generate and manipulate state spaces). By taking the number of
involved parties and the data domains as large as possible, a good impression of
the behaviour can be obtained and many of its problems are exposed, although
total correctness cannot be verified in general.

A problem of the sketched route is that the state spaces that are generated are
as large as possible, which, giving the growing memory capacities of contempor-
ary computers is huge. So, as the complexity of reduction algorithms is generally
more than linear, the time required to reduce these state spaces increases even
more. Let n be the number of states and m be the number of transitions of a
state space. The time complexity of computing the minimal branching bisimilar
state space is O(nm) [11]; for weak bisimulation this is O(n®) where o = 2.376
is the constant required for matrix multiplication [12]. ,

We introduce a state space reduction algorithm of complexity O(m FanoutT)
where Fanout, is the maximal number of outgoing 7-transitions of a node in

9 A technical report including full proofs appeared as [9].

E-mail: JanFriso.Groote@cwi.nl, Jaco.van.de.Pol@cwi.nl

M. Nielsen and B. Rovan (Eds.): MFCS 2000, LNCS 1893, pp. 383-393, 2000.
© Springer-Verlag Berlin Heidelberg 2000

384 J.F. Groote and J. van de Pol

the transition system. Assuming that for certain classes of transition systems
Fanout, is constant, our procedure is linear in the size of the transition system.

The reduction procedure is based on the detection of 7-confluence. Roughly,
we call a 7-transition from a state s confluent if it commutes with any other
a-transition starting in s. When the maximal class of confluent 7-transitions
has been determined, 7-priorisation is applied. This means that any outgoing
confluent 7-transition may be given “priority”. In some cases this reduces the
size of the state space with an exponential factor. For convergent systems, this
reduction preserves branching bisimulation, so it can serve as a preprocessing
step to computing the branching bisimulation minimization.

Related Work. Confluence has always been recognized as an important feature
of the behaviour of distributed communicating systems. In [16] a chapter is de-
voted to various notions of determinacy of processes, among which confluence,
showing that certain operators preserve confluence, and showing how confluence
can be used to verify certain processes. In [14,19] these notions have been ex-
tended to the m-calculus. In [10] an extensive investigation into various notions
of global confluence for processes is given, where it is shown that by applying
T-priorisation, state spaces could be reduced substantially. In particular the use
of confluence for symbolic verification purposes in the context of linear process
operators was discussed. In [17] it is shown how using a typing system on pro-
cesses it can be determined which actions are confluent, without generating the
transition system. In [13] such typing schemes are extended to the m-calculus.
Our method is also strongly related to partial order reductions (7,21], where an
independence relation on actions and a property to be checked are assumed.
The property is used to hide actions, and the independence relation is used for
a partial order reduction similar to our r-priorisation.

Our primary contribution consists of providing an algorithm that determines
the maximal set of confluent 7-transitions for a given transition system. This
differs from the work in [10] which is only applicable if all 7-transitions are
confluent, which is often not the case. It also differs from approaches that use
type systems or independence relations, in order to determine a subset of the
confluent T-transitions. These methods are incapable of determining the maximal
set of confluent 7-transitions in general.

In order to assess the effectiveness of our state space reduction strategy, we
implemented it and compared it to the best implementation of the branching
bisimulation reduction algorithm that we know [3]. In combination with 7-loop
elimination, and 7-compression, we found that in the worst case the time that
our algorithm required was in the same order as the time for the branching
bisimulation algorithm. Under the favourable conditions that there are many
equivalence classes and many visible transitions, our algorithm appears to be a
substantial improvement over the branching bisimulation reduction algorithm.

Acknowledgements. We thank Holger Hermanns for making available for

con.lparison purposes a new implementation of the branching bisimulation al-
gorithm devised by him and others [3].

State Space Reduction Using Partial 7-Confluence 385
2 Preliminaries

In this section we define elementary notions such as labelled transition systems,
confluence, branching bisimulation and T-convergence.

Definition 1. A labelled transition system is a triple A = (S, Act,—) where S
15 a set of states; Act is a set of actions; and —> C S x Act x S is the transition
relation. We assume that T € Act, a special constant denoting internal action.

We write — for the binary relation {(s,z) | (s, a,t) €—}. We write s It
iff there is a sequence sg,...,s, € Swithn>0,sp =5, s, =t and 5, — Sigl-
We write t 2 s iff t — s and 5 — t, i.e. s and t lie on a 7-loop. Finally, we
write s —— s’ if either s —% s,ors=sanda=r.

A set T C—> is called a silent transition set of A. We write s —sp ¢ iff
(s,t) € T. With s —:T t we denote s = t or s —sp t. We define the set
Fanout,(s) for a state s by: Fanout,(s) = {s — s'|s' € S}. A is finite if S
and Act have a finite number of elements. In this case, n denotes the number
of states of A, m is the number of transitions in A and m, denotes the number

of 7-transitions. Furthermore, we write Fanout, for the maximal size of the set
Fanout,(s).

Definition 2. Let A = (S, Act,—) be a labelled transition system and T be a
silent transition set of A. We call A T-confluent iff for each transition s —sp s’
and for all s -2+ s" (a € Act) there exists a state s € S such that s’ 2y 5"
s —?*T s"'. We call A confluent iff A is —-confluent.

Definition 3. Let A = (Sa, Act,—4) and B = (Sg, Act,—pg) be labelled
transition systems. A relation R C S4 x Sp is called a branching bisimulation
relation on A and B iff for every s € S4 and t € Sp such that sRt it holds that

1. If s =5 4 s’ then for some t' and t”, t —i>B t —Em t"” and sRt' and s'Rt".
2. Ift “spt, then for some s’ ands”, s —— 4 8" — 4 8" and s'Rt and s Rt'.

For states s € S4 and t € Sp we write s&2pt on A x B, and say s and t are
branching bisimilar, iff there is a branching bisimulation relation R on A and B
such that sRt. In this case, <2}, itself is the maximal branching bisimulation, and
it is an equivalence relation. A transition s — s’ is called nert iff seys’.

Theorem 1. Let A = (S, Act,—) be a labelled transition system and let T be
a silent transition set of A. If A is T-confluent, every s —sp s’ is inert.

Proof. (sketch) It can be shown that the relation R = —F—>T is a branching
bisimulation relation. o

386 J.F. Groote and J. van de Pol

S1 52 56

y

‘i“‘/“ AR \/\/\

3———» 4———»5

(a) (b) (c)

Fig. 1. Counterexamples to preservation of confluence

Lemma 1. Let A be a labelled transition system. There exists o largest silent
transition set Teong Of A, such that A is Teong-confluent.

Proof. (sketch) Consider the set T, being the set of all silent transition sets 7’
such that A is T-confluent. Define Toons = J T O

Definition 4. Let A = (S, Act, —) be a labelled transition system. We call A
convergent iff there is no infinite sequence s; — Sg — - -

3 Elimination of 7-Cycles

In this section we define the removal of r-loops from a transition system. The
idea is to collapse each loop to a single state. This can be done, because 2 is an
equivalence relation on states.

Definition 5. Let A = (S, Act,—) be a labelled transition system. Define
[s]a = {t € S|t & s}. Define the relation [—s]a, such that S[—=]aS" iff
there exist s € S, s € S’ such that s — s’ but not S = S’ and a = 7. Write
[S]a for {[s]als € S} and [T)a for the relation {[s|a]—=]altla | s — t € T'}.

Definition 6. Let A = (S, Act, —) be a labelled transition system. The T-cycle
reduction of A is the labelled transition system Ag = ([S]a, Act, [—]a).

Using the algorithm to detect strongly connected components [1] it is possible to
construct the 7-cycle reduction of a labelled transition system A in linear time.

Lemma 2. Let A = (S, Act,—) be a labelled transition system and let Ag be
its T-cycle reduction. Then for every state s € S, st2p[s]a on A x Ag.

We now show that taking the 7-cycle reduction can change the confluence
structure of a process. Figure 1.a shows that a non-confluent 7-transition may
become confluent after 7-cycle reduction: s; — s, is not confluent before 7-cycle
reduction, but it is afterwards. Conversely, Figure 1.b shows that a confluent 7-
transition may become non-confluent after 7-cycle reduction. Observe that all
T-transitions are confluent. After 7-cycle reduction is applied, s; and sy are
taken together, and we see that {si,5:} ¢ {s3} and {s1,s9} —2>g {s5}; but

State Space Reduction Using Partial 7-Confluence 387

there is no way to complete the diagram. We can extend the example slightly
(Figure 1.c) showing that states that have outgoing confluent transitions before
7-cycle reduction, do not have these afterwards. Nevertheless, T-cycle reduction
is unavoidable in view of Example 1 (Section 5).

4 Algorithm to Calculate Ti,,y

We now present an algorithm to calculate Tony for a given labelled transition sy-
stem A = (5, Act, —). First the required data structures and their initialization
are described: Each transition s — s’ is equipped with a boolean candidate
that is initially set to true, indicating whether this transition is still a candidate
to be put in T¢ons. Furthermore, for every state s we store a list of all incoming
transitions, as well as a list with outgoing 7-transitions. Also, each transition
s ==+ s is stored in a hash table, such that given s, a and &', it can be found in
constant time, if it exists. Finally, there is a stack on which transitions are sto-
red, in such a way that membership can be tested in constant time. Transitions
on the stack must still be checked for confluence; initially, all transitions are put
on the stack.

The algorithm now works as follows. As long as the stack is not empty, remove
a transition s — s’ from it. Check that s — s’ is still confluent with respect
to all T-transitions outgoing from state s that have the variable candidate set.
Checking confluence means that for each candidate transition s — s it must
be verified that either

— for some s € S, s” =5 " and s’ — s, which is still candidate;
—or s’ % ¢

— ora =7 and s’ - ¢ with the variable candidate set;

or finally, a = 7 and s’ = s”.

|

For all transitions s —» s/ for which the confluence check with respect to
some s — s’ fails, the boolean candidate is set to false. If there is at least one
transition s — s” for which the check fails, then all transitions ¢t — s that are
not on the stack must be put back on it. This can be done conveniently, using
the list of incoming transitions of node s.

After the algorithm has terminated, i.e. when the stack is empty, the set
Talg is formed by all 7-transitions for which the variable candidate is still true.
Termination of the algorithm follows directly from the following observation:
either, the size of the stack decreases, while the number of candidate transitions
remains constant; or the number of candidate transitions decreases, although
in this case the stack may grow. Correctness of the algorithm follows from the
theorem below, showing that Thiy = Teons-

Lemma 3. A is Ty-confluent.

Proof. Consider transitions s — s’ and s — s”. Consider the last step, with
index say n, in the algorithm where s — ' is removed from the stack. The
variable candidate of s — s was never set to false, hence either:

388 J.F. Groote and J. van de Pol

—a=7and s =s", or
no_aoot
- s — ¢, or
T . . .
a =7 and ' — s” with the variable candidate set (at step n), or
. a
for some s € S, s/ - " was a candidate at step n, and s — s

|

|

In the first two cases it is obvious that s — s’ and s — 5" are Talg—conﬂuent
w.r.t. each other. In the last two cases confluence is straightforward, if resp€¢-
tively s’ — s” or s/ — s" are still candidate transitions when the algorith™
terminates. This means that these transitions are put in Ty, If, however, this is
not the case, then there is a step n’ > n in the algorithm where the candidat®
variable of s’ —+ s or s —» s, respectively, has been reset. In this case each
transition ending in s’ is put back on the stack. In particular s — s’ is put on
the stack to be removed at some step n”” > n’ > n, contradicting the fact that
n was the last such step. 0

Theorem 2. T,ppnf = Tay

Proof. From the previous lemma, it follows that Toy C Teons. We now prove
the reverse. Assume towards a contradiction that s — s’ in Teons is the first
transition in the algorithm, whose variable candidate is erroneously marked
false. This only happens when confluence w.r.t. some s — s fails. By Toonf-

"

T a T :
confluence, for some s, s —sp s and s’ - s"’. As s — s’ is marked

conf
false, it must be the case that s” —+ s”, and its candidate bit has been reset
earlier in the algorithm. But this contradicts the fact that we are considering
the first instance where a boolean candidate was erroneously set to false. O

Lemma 4. The algorithm terminates in O(m Fanout3) steps.

Proof. Checking that a transition s — s’ is confluent, requires (’)(Fanoutz)
steps: for each —-successor s” of 5 we have to try all —s-successors of s”. This
can be conveniently done using the list of outgoing 7-transitions from s’ and s”’.
The check whether s” —%+ 5" is a single hash table lookup.

Every transition s — s’ is put at most Fanout, + 1 times on the stack:
initially and each time the variable candidate of a 7-successor of s’ is reset. For
m transitions this leads to the upper bound: O(m Fanout?). O

Note that it requires O (m Fanout?) to check whether a labelled transition system
is 7-confluent with respect to all its 7-transitions. As determining the set Teopy
seems more difficult than determining global 7-confluence, and we only require a
factor Fanout, to do so, we expect that the complexity of our algorithm cannot
be improved. We have looked into establishing other forms of partial 7-confluence
(cf. [10]), especially forms where, given s — s" and s — s, it suffices to find
some state s/ such that s s s and 8" -5 s/ However, doing this requires
the dynamic maintenance of the transitive 7-closure relation, which we could not
perform in a sufficiently efficient manner to turn it into an effective preprocessing
step for branching bisimulation.

State Space Reduction Using Partial 7-Confluence 389

5 r7-Priorisation and 7-Compression

After the set T onp for alabelled transition system A has been determined we can
“harvest” by applying 7-priorisation and calculating a form of T-compression.
Both operations can be applied in linear time, and moreover, reduce the state
space. The T-priorisation operation allows to give precedence to silent steps,
provided they are confluent. This is defined as follows:

Definition 7. Let A = (S, Act,—4) be a labelled transition system and let T
be a set of T-transitions of A. We say that a transition system B = (S, Act, —)
is a T-priorisation of A with respect to T iff for all s,s’ € S and a € Act

. a / a ’
— if s —p s’ thens — 4 &', and
— if s =254 ¢ then s =g ' or for some s € S it holds that s —g s” € T.

It holds that 7-priorisation maintains branching bisimulation.

Theorem 3. Let A = (S, Act,—> 4) be a convergent, labelled transition system,
which is T-confluent for some silent transition set T. Let B = (S, Act,—4) be
a T-priorisation of A w.r.t. T. Then for each state s € S, s&ps on A x B.

Proof. (sketch) The auto-bisimulation € on A x A is also a branching bisi-
mulation relation on A x B. This is proved using an auxiliary lemma, which

ensures that if s&fit, s =54 & —=, s” and s&{'s’, then for some ¢’ and ¢”,

t Topt! Zspt”, teft’ and s”<t". This is proved by induction on —~. O

Ezample 1. Convergence of a labelled transition system is a necessary precon-
dition. Let a labelled transition system A be given with single state s and two
transitions: {s — s, s —s s}. It is clearly confluent, but not convergent. The
T-priorisation is a single 7-loop, which is not branching bisimilar with A.

The 7-priorisation w.r.t. a given set T of transitions can be computed in linear
time, by traversing all states, and if there is an outgoing T-transition, removing
all other outgoing transitions. Consider the labelled transition system below.
All 7-transitions are confluent, and 7-priorisation removes more than half of the
transitions.

A typical pattern in 7-prioritised transition systems are long sequences of 7-
steps that can easily be removed. We call the operation doing so T-compression.

390 J.F. Groote and J. van de Pol

a
af .

1~

(b)
Fig. 2. The effect of repetition

Definition 8. Let A = (S, Act,—>) be a convergent labelled transition sy-
stem. For each state s € S we define with well-founded recursion on — the
7-descendant of s, notation 7*(s), as follows: 7*(s) = 7*(s') if for some s,
s —s4 ' is the only transition leaving s, and 7*(s) = s otherwise. The T-
compression of A is the transition system Ap = (S, Act, —> o,) where — 4 .=
{(s,a,7*(s")) | s =>4 5}

Theorem 4. Let A = (S, Act,—) be a labelled transition system and Ap the
T-compression of A. Then for alls € S, s&ps on A X Ap.

Proof. (sketch) It can be shown that R = {(s,s) | s € S}U{(s,7*(s)) | s € S}
is a branching bisimulation. O

Note that the T-compression can be calculated in linear time. During a depth first
sweep 7*(s) can be calculated for each state s. Then by traversing all transitions,
each transition s —= s’ can be replaced by s —— 7*(s").

6 The Full Algorithm and Benchmarks

In this section we summarize all operations in a complete algorithm and give
some benchmarks to indicate its usefulness. Note that 7-compression can make
new diagrams confluent (in fact we discovered this by experimenting with the im-
plementation). Therefore, we present our algorithm as a fixed point calculation,
starting with a transition system A = (S, Act, —):

B:=Ag;
repeat
n:=#states of B;
calculate T,ony for B;
apply 7-priorisation to B w.r.t. Teong;
apply T-compression to B;
while n # #states of B;

State Space Reduction Using Partial 7-Confluence 391

The example in Figure 2.a shows that in the worst case the loop in the al-
gorithm must be repeated {2(n) times for a labelled transition system with n
states. Only the underlined 7-transitions are confluent. Therefore, each subse-
quent iteration of the algorithm removes the bottom tile, connecting the two
arrows in the one but last line.

An improvement, which we have not employed, might be to apply strong
bisimulation reductions, in this algorithm. As shown by [18] strong bisimulation
can be calculated in O((m + n)logn), which although not being linear, is quite
efficient. Unfortunately, Figure 2.b shows an example which is minimal with
respect to all mentioned reductions and strong bisimulation, but not with respect
to branching bisimulation.

In order to understand the effect of partial confluence checking we have ap-
plied our algorithm to a number of examples. We can conclude that if the number
of internal steps in a transition system is relatively low, and the number of equi-
valence classes is high, our algorithm performs particularly well compared to
the best implementation [3] of the standard algorithm for branching bisimula-
tion [11]. Under less favourable circumstances, we see that the performance is
comparable with the implementation in [3].

In Table 1 we summarize our experience with 5 examples. In the rows we list
the number of states “n” and transitions “m” of each example. The column under
“n (redl)” indicates the size of the state space after 1 iteration of the algorithm.
“#iter” indicates the number of iterations of the algorithm to stabilize, and the
number of states of the resulting transition system is listed under “n (red tot)”.
The time to run the algorithm for partial confluence checking is listed under
“time conf”. The time needed to carry out branching bisimulation reduction
and the size of the resulting state space are listed under “time branch” and “n
min”, respectively. The local confluence reduction algorithm was run on a SGI
Powerchallenge with a 300MHz R12000 processor. The branching bisimulation
reduction algorithm was run on a 300MHz SUN Ultra 10.

The Firewire benchmark is the firewire or IEEE 1394 link protocol with 2
links and a bus as described in [15,20]. The SWP1.2 and SWP1.3 examples are
sliding window protocols with window size 1, and with 2 and 3 data elements,
respectively. The description of this protocol can be found in [2]. The processes
PAR2.12 and PARG.7 are specially constructed processes to see the effect of the
relative number of 7-transitions and equivalence classes on the branching bisi-
mulation and local confluence checking algorithms. They are defined as follows:

12 7
PAR2.12 = || 7a; PARG.7 = || Taibicidie;
i=1 =1

1= =

Note that in these cases, partial confluence checking finds a minimal state space
w.r.t. branching bisimulation.

392

J.F. Groote and J. van de Pol

Table 1. Benchmarks showing the effect of partial 7-confluence checking

[[n[min (redD)[#iter[n (red tot)[time confln min|time branch|
Firewire || 372k| 642k 46k 4 23k 3.68 2k 132s
SWP1.2 || 320k(1.9M 32k 960 13s 49 9s
SWP1.3 {|1.2M|7.5M 127k 3k 57s| 169 136s
PAR2.12|[531k|4.3M 4k 4k 98s 4k 64s
PARG6.7 || 824k|4.9M 280k 280k 55s| 280k 369s

NN

References

10.

11.

12.

13.

14.

15.

16.
17.

. AV. Aho, J.E. Hopcroft and J.D. Ullman. Data structures and algorithms.

Addison-Wesley. 1983.

. M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window

protocol in pCRL. The Computer Journal, 37(4): 289-307, 1994.

. M. Cherif and H. Garavel and H. Hermanns. The bcg_min user manual, version

1.1. http://wwv.inrialpes.fr/vasy/cadp/man/bcg min.html, 1999.

. D. Dill, CN. Ip and U. Stern. Murphi description language and wverifier.

http://sprout.stanford.edu/dill/murphi.html, 1992-2000.

. H. Garavel and R. Mateescu. The Caesar/Aldebaran development package.

http://www.inrialpes.fr/vasy/cadp/, 1996-2000.

. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-

lation semantics. In Journal of the ACM, 43(3):555-600, 1996.

. P. Godefroid and P. Wolper. A partial approach to model checking. Information

and Computation, 110(2):305-326, 1994.

. J.F. Groote and B. Lisser. The #CRL toolset. http://www.cwi.nl/ merl, 1999-

2000.

. JF. Groote and J.C. van de Pol. State space reduction wusing partial 7-

confluence. Technical Report CWI-SEN-R0008, March 2000. Available via
http://www.cwi.nl/~vdpol/papers/.

J.F. Groote and M.P.A. Sellink. Confluence for process verification. In Theoretical
Computer Science B, 170(1-2):47-81, 1996.

J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimu-
lation and stuttering equivalence. In Proc. 17th ICALP, LNCS 443, 626-638.
Springer-Verlag, 1990.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43-68, 1990.

N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the m-calculus. In:
Proceedings of the 29rd POPL, pages 358-371. ACM press, January 1996.

X. Liu and D. Walker. Confluence of processes and systems of objects. In Procee-
dings of TAPSOFT 95, pages 217-231, LNCS 915, 1995.

S.P. Luttik. Description and formal specification of the link layer of P1394. Tech-
nical Report SEN-R9706, CWI, Amsterdam, 1997.

R. Milner. Communication and Concurrency. Prentice Hall International. 1989.
U. Nestmann and M. Steffen. Typing confluence. In: Proceedings of FMICS’97,
pages 77-101. CNR Pisa, 1997.

18

19.

20.

21

State Space Reduction Using Partial 7-Confluence 393

. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on

Computing, 16(6):973-989, 1987.

A. Philippou and D. Walker. On confluence in the pi-calculus. 24th Int. Coll. on

Automata, Languages and Programming, LNCS 1256, Springer-Verlag, 1997.

M. Sighireanu and R. Mateescu. Verification of the link layer protocol of the IEEE-

1394 serial bus (firewire): an experiment with E-LOTOS. In Journal on Software

Tools for Technology Transfer (STTT), 2(1):68-88, 1998.

. A. Valmari. A stubborn attack on state explosion. In Proc. of Computer Aided
Verification, LNCS 531, pages 25-42, Springer-Verlag, 1990.

